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Abstract

Automated knowledge acquisition is an important
research issue in improving the efficiency of med-
ical expert systems. Rules for medical expert sys-
tems consists of two parts: one is a proposition
part, which represent a if-then rule, and the other
is probabilistic measures, which represents relia-
bility of that rule. Therefore, acquisition of both
knowledge is very important for application of ma-
chine learning methods to medical domains. Ex-
tending concepts of rough set theory to probabilistic
domain, we introduce a new approach to knowledge
acquisition, which induces probabilistic rules based
on rough set theory(PRIMEROSE) and develop a
program that extracts rules for an expert system
from clinical database, using this method. The re-
sults show that the derived rules almost correspond
to those of medical experts.

INTRODUCTION

One of the most important problems in rule in-
duction methods is how to estimate the reliabil-
ity of the induced results, which is a semantic
part of knowledge to be induced from finite train-
ing samples. In order to estimate errors of in-
duced results, resampling methods, such as cross-
validation, the bootstrap method, have been in-
troduced. However, while cross-validation method
obtains better results in some domains, the boot-
strap method calculates better estimation in other
domains, and it is very difficult how to choose one
of the two methods. In order to reduce these disad-
vantages further, we introduce the combination of
repeated cross-validation method with the boot-
strap method, both of which are studied as non-
parametric error estimation methods or statistical
model estimation ones in the community of statis-

tics. The results show that this combination esti-
mates the accuracy of the induced results correctly.
The paper is organized as follows: in section

2, we mention about probabilistic rules. Section
3 presents our new method, PRIMEROSE for in-
duction of RHINOS-type rules. Section 4 gives ex-
perimental results. Finally, in section 5, we men-
tion about Ziarko's related work, Variable Preci-
sion Rough Set Model.

RHINOS2 PROBABILISTIC RULES

Our approach is firstly motivated by automatic
rule generation for RHINOS [5].RHINOS is an ex-
pert system which diagnoses the causes of headache
or facial pain from manifestations. For the limita-
tion of the space, in the following, we only discuss
about the acquisition of inclusive rules,which are
used for differential diagnosis. For further infor-
mation,refer to [5].

Inclusive rule consists of several rules,which we
call positive rules. The premises of positive rules
are composed of a set of manifestations specific to a
disease to be included for the candidates of disease
diagnoses. If a patient satisfy one set of the man-
ifestation of a inclusive rule, we suspect the cor-
responding disease with some probability. These
rules are derived by asking the following ques-
tions in relation to each disease to the medical ex-
perts:1.a set of manifestations by which we strongly
suspect a corresponding disease. 2.the probability
that a patient has the disease with this set of man-
ifestations:SI(Satisfactory Index) 3.the ratio of the
number the patients who satisfy the set of man-
ifestations to that of all the patients having this
disease:CI(Covering Index) 4.If sum of the derived
CI(tCI) is equal to 1.0 then end. If not, goto 5.
5.For the patients suffering from this disease who
do not satisfy all the collected set of manifestations,
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goto 1. An inclusive rule is described by the set
of manifestations, and its satisfactory index. Note
that SI and CI are given experimentally by medical
experts. For example, let us consider an example
of inclusive rules. Let us show an example of an
inclusive rule of common migraine(CI=0.75) as fol-
lows:

If
history:paroxysmal, jolt headache:yes,
nature: throbbing or persistent,
prodrome:no, intermittent symptom:no,
persistent time: more than 6 hours, and
location: not eye,
Then we suspect common migraine (SI=0.9,
CI=0.75).

Then SI=0.9 denotes that we can diagnose com-
mon migraine with the probability 0.9 when a
patient satisfies the premise of this rule. And
CI=0.75 suggests that this rule only covers 75 % of
total samples which belong to a class of common
migraine.

Formally, we can represent each positive rule as
a tuple: (d, Ri, SIi(, CIi)), where d denotes its con-
clusion, and Ri denotes its premise. The inclusive
rule is described as: ({(d,Ri,SI,(,CI1)),*...
(d, Rk, SIk(, CIk))}, tCI). where total CI(tCI) is
defined as the sum of CI of each rule with the same
conclusion:Ei CIi.

ROUGH SETS AND PRIMEROSE

Rough set theory is developed and rigorously for-
mulated by Pawlak[9]. This theory can be used to
acquire certain sets of attributes which would con-
tribute to class classification and can also evaluate
how precisely these attributes are able to classify
data.

For the limitation of space, we mention only how
to extend the original rough set model to proba-
bilistic domain, which we call PRIMEROSE( Prob-
abilistic Rule Induction Method based on ROugh
Sets ). And we denote a set which supports an
equivalence relation R, by [x]Ri and we call it an
indiscernible set. For example, if an equivalence
relation R is supported by a set {1,2,3}, then [X]R
is equal to {1,2,3} ( [X]R = {1,2,3} ).

Definition of Probabilistic Rules

We extend the definition of consistent rules to
probabilistic domain. For this purpose, we use the
definition of inclusive rules which Matsumura et.al
[5] introduce for the development of a medical ex-
pert system, RHINOS(Rule-based Headache and

facial pain INformation Organizing System). This
inclusive rule is formulated in terms of rough set
theory as follows:

Definition 1 (Probabilistic Rules) Let Ri be
an equivalence relation and D denotes a set whose
elements belong to one class and which is a sub-
set of U. A probabilistic rule of D is defined as a
tuple, < D,Ri,SI(Rj,D),CI(Rj,D) > where Ri,
SI, and CI are defined as follows.
Ri is a conditional part of a class D and defined

as:
Ri s.t. [X]RinfD ¢

SI and CI are defined as:

SI(Ri,D) =

CI(Ri,D) =

card {([xIRi, nD) U([x]iAR nADC)}
card { [x]R, U[x] Ri}

card {([x]R,i nD) U([x]c, nfDC)}
card {DUDC}

where Dc or [x]c. consists of unobserved fu-
ture cases of a class D or those which satisfies
Ri,respectively. 0

In the above definition, unobserved future cases
means all possible future cases. So we consider
an infinite size of cases, which is called total popu-
lation in the community of statistics.
And SI(Satisfactory Index) denotes the proba-

bility that a patient has the disease with this set
of manifestations, and CI(Covering Index) denotes
the ratio of the number the patients who satisfy
the set of manifestations to that of all the patients
having this disease. Note that SI(Ri,D) is equiva-
lent to the accuracy of Ri.
A total rule of D is given by R = ViR, and

then total CI(tCI) and total SI(tCI) is defined
as: tCI(R,D) = CI(V, Rj,D), and tCI(R,D) =
SI(V, Rj,D) respectively.

Since the above formulae include unobserved
cases, we are forced to estimate these measures
from the training samples. For this purpose, we
introduction cross-validation and the Bootstrap
method to generate "pseudo-unobserved" cases
from these samples as shown in the next subsec-
tion.

Cross-Validation and the Bootstrap

Cross-validation method for error estimation
is performed as following: first, the whole
training samples £ are split into V blocks:
{41,C2. ,C-}. Second, repeat for V times the
proceddare in which we induce rules from the train-
ing samples C - Li(i = 1, * * *, V) and examine the
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error rate erri of the rules using Ci as test samples.
Finally, we derive the whole error rate err by aver-
aging erri over i, that is, err = Ej1= erri/V (this
method is called V-fold cross-validation). There-
fore we can use this method for estimation of CI
and SI by replacing the calculation of err by that
of CI and SI, and by regarding test samples as
unobserved cases.
On the other hand, the Bootstrap methods is ex-

ecuted as follows: first, we create empirical proba-
bilistic distribution(Fn) from the original training
samples. Second, we use the Monte-Carlo methods
and randomly take the training samples by using
Fn. Third, rules are induced by using new train-
ing samples. Finally, these results are tested by
the original training samples and statistical mea-
sures, such as error rate are calculated. We iterate
these four steps for finite times. Empirically, it is
shown that about 200 times repetition is sufficient
for estimation.

Interestingly, Efron[3] shows that estimators by
2-fold cross-validation are asymptotically equal to
predictive estimators for completely new pattern
of data, and that Bootstrap estimators are asymp-
totically equal to maximum likelihood estimators
and are a little overfitting to training samples.
Hence, we can use the former estimators as the
lower bound of SI and CI, and the latter as the
upper bound of SI and CI.

Furthermore, in order to reduce the high vari-
ance of estimators by cross-validation, we in-
troduce repeated cross-validation method,which
is firstly introduced by Walker[12]. In this
method, cross-validation methods are executed re-
peatedly(safely, 100 times), and estimates are av-
eraged over all the trials. In summary, since our
strategy is to avoid the overestimation and the high
variabilities, we adopt combination of repeated 2-
fold cross-validation and the Bootstrap method in
this paper.

Cluster-based Reduction of Knowledge

Reduction technique removes dependent vari-
ables from rules. This dependence is origi-
nated from algebraic dependence, that is, if
f(a,, a2, ...*an,an+) = f(a,7a2, ...* an) = 0
then an+1 is dependent on a,, a2, ... , an. Hence,
intuitionally, if the removal of one variable does
not change the former consistent classification, we
can remove this variable. In PRIMEROSE, we ex-
tend the concept of reduction to probabilistic do-
main: we delete an attribute when the deletion
does not make apparent SI change. For example,

if one rule support one class with some probabil-
ity and other classes with some probabilities, we
minimize its conditionals by the cluster-based re-
duction: that is, if the removal of one attribute
does not change the above probabilities, we can
remove this attribute.

This process means that we fix the probabilistic
nature of the induced rules and is very effective
when databases include inconsistent samples. This
method is very similar to VPRS model introduced
by Ziarko[13].
On the other hand, in the original Pawlak's mod-

els inconsistent parts is ignored and only reduction
of the consistent parts is executed. For precise in-
formation, please refer to [9, 13, 11].

Algorithm for PRIMEROSE

Algorithms for rule induction can be derived by
embedding rough set theory concept into the al-
gorithms discussed in Section 2. An algorithm for
induction of inclusive rules is described as follows:

1)Using all attributes, calculate all equivalent rela-
tion {R,} which covers all of the training samples,
that is, calculate {Ril U[X]Ri = U}.
2)For each class Dj, collect all the equivalent rela-
tion Ri such that [XRi n Dj 5¢ 0. For each combi-
nation, calculate its possible region.
3)Calculate SI(Rj,Dj).
4)Apply probabilistic reduction of knowledge to
each relation Ri until SI is changed(Minimize the
components of each relation). If several candidates
of minimization are derived, connect each with dis-
junction.
5)Collect all the rules, perform the cross-validation
method and the bootstrap method to estimate
utCI for each Dj.

EXPERIMENTAL RESULTS

We apply PRIMEROSE to headache(RHINOS's
domain), meningitis, and cerebrovascular diseases,
whose precise information are given in Table 2 and
3. These data are incomplete, and include many
inconsistencies.
The experiments are performed by the following

three procedures. First, we randomly splits these
samples into pseudo-training samples and pseudo-
test samples. Second, by using the pseudo-training
samples, PRIMEROSE induces rules and the sta-
tistical measures. Third, the induced results are
tested by the pseudo-test samples. We perform
these procedures for 100 times and average each
accuracy and the estimators for accuracy over 100
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Table 3: Experimental Results (Estimation)

Domain Samples Classes Attributes
headache 121 10 20
meningitis 99 3 25
CVD 137 6 27

Table 2: Experimental Results (Comparison)

Domain Method
headache CART

AQ15
PRIMEROSE

meningitis CART
AQ15

PRIMEROSE
CVD CART

AQ15
PRIMEROSE

Accuracy
62.8%
61.2%
74.4%
60.6%
67.7%
74.7%
65.7%
73.0%
81.7%

trials. We compare PRIMEROSE with AQ15[6]
and CART[1].
Experimental results are shown in Table 2 and

3. In Table 3, the first column shows estima-
tors tested by the pseudo-test samples, as shown
above. The second and third column denotes cross-
validation estimator and the bootstrap estimator,
respectively.
These results suggest that PRIMEROSE per-

forms a little better than the other two methods
and that the estimation of accuracy performs very
well.

RELATED WORKS

Comparison with AQ15

AQ is an inductive learning method based on in-
cremental STAR algorithm developed by Michal-
ski [6]. This algorithm selects one seed from
positive examples and starts from one "selec-
tor" (attribute). It adds selectors incrementally un-
til the "complexes" (conjunction of attributes) ex-
plain only positive examples. Since many com-
plexes can satisfy these positive examples, accord-
ing to a flexible extra-logical criterion,AQ finds the
most preferred one.

It would be surprising that the complexes sup-
ported only by positive examples corresponds to
the positive region. That is, the rules induced by

Domain Test CV BS
headache 74.4% 58.7% 91.6%
meningitis 74.7% 59.6% 88.3%
CVD 81.7% 70.1% 87.5%

AQ is equivalent to consistent rules introduced by
Pawlak[9]. However, as shown in [9], the ordinary
rule induction by rough set theory is different from
AQ in strategy;Pawlak's method starts from de-
scription by total attributes, and then performs
reduction to get minimal reducts,that is, rules are
derived in a top-down manner. On the contrary,
AQ induces in a bottom-up manner. While these
approaches are different in strategies, they are of-
ten equivalent because of logical consistency, and
this difference suggests that when we need the large
number of attributes to describe rules, induction
based on rough set theory is faster.
One of the important problem of the AQ method

is that it does not work well in probabilistic domain
[6]. This problem is also explained by matroid the-
ory: inconsistent data do not satisfy the condi-
tion of independence, so we cannot derive a basis
of matroid in probabilistic domain using the pro-
posed definition, which is the same problem as the
Pawlak's method,as discussed in Section 4. Hence
it is necessary to change the definition of indepen-
dence to solve those problems.
As discussed earlier,in PRIMEROSE, we adopt

cluster membership as the condition of indepen-
dence, instead of using class membership. Restrict-
ing the probabilistic nature, we can use almost the
same algorithm as class-consistency based reduc-
tion. Then we estimate the probabilistic nature of
the derived rules using some resampling plans, such
as cross-validation method in this paper. This is
one kind of solution to the above problems, and the
similar approach can also solve the disadvantage of
AQ.

Comparison with CART and ID3

Induction of decision trees, such as CART[1] and
ID3[10] is another inductive learning method based
on the ordering of variables using information en-
tropy measure or other similar measures. This
method splits training samples into smaller ones in
a top-down manner until it cannot split the sam-
ples, and then prunes the overfitting leaves.

There are many discussions about the problems
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of this approach[7, 8]. Two of the important prob-
lems are about high computational costs of prun-
ing and structural instability. As shown in [4],
constructing optimal binary decision trees is NP-
complete. In this context, this means that it is dif-
ficult to determine which leaves should be pruned.
CART uses the combination of cross validation
method and minimal cost complexity. The dif-
ficulty is to calculate the complexity because we
should choose the pruned leaves.
PRIMEROSE method also has the similar prob-

lems since reduction technique corresponds to
pruning. While reduction technique examines the
dependencies of attributes, pruning techniques are
mainly based on the trade-off between accuracy
and structural complexity.
Note that reduction technique only uses topo-

logical characteristics of the training samples. And
dependencies and independencies of the attributes
are important factors, since dependent attributes
will not change accuracy of the induced rules.
Moreover,as shown in [2], if the attributes are in-
dependent and quantized to k levels, there is no
peaking phenomenon of accuracy in the Bayesian
context, as discussed in the test-sample accuracy
of decision trees.
Hence extracting independent variables is very

important in probabilistic domain. These facts
suggests that when the attributes are the mixture
of dependent and independent ones, PRIMEROSE
performs much better.On the other hand, when
almost all of the attributes are independent,
PRIMEROSE is much worse since we cannot use
information about dependencies.

CONCLUSION

We introduce a new approach to knowledge ac-
quisition, PRIMEROSE, and develop an program
based on this method to extract rules for an ex-
pert system from clinical database. It is applied to
three medical domains. The results show that the
derived rules performs a little better than CART
and AQ15 and that the estimation of statistical
measures performs well.
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